Analysis of Differences in Phenology Extracted from the Enhanced Vegetation Index and the Leaf Area Index
نویسندگان
چکیده
Remote-sensing phenology detection can compensate for deficiencies in field observations and has the advantage of capturing the continuous expression of phenology on a large scale. However, there is some variability in the results of remote-sensing phenology detection derived from different vegetation parameters in satellite time-series data. Since the enhanced vegetation index (EVI) and the leaf area index (LAI) are the most widely used vegetation parameters for remote-sensing phenology extraction, this paper aims to assess the differences in phenological information extracted from EVI and LAI time series and to explore whether either index performs well for all vegetation types on a large scale. To this end, a GLASS (Global Land Surface Satellite Product)-LAI-based phenology product (GLP) was generated using the same algorithm as the MODIS (Moderate Resolution Imaging Spectroradiometer)-EVI phenology product (MLCD) over China from 2001 to 2012. The two phenology products were compared in China for different vegetation types and evaluated using ground observations. The results show that the ratio of missing data is 8.3% for the GLP, which is less than the 22.8% for the MLCD. The differences between the GLP and the MLCD become stronger as the latitude decreases, which also vary among different vegetation types. The start of the growing season (SOS) of the GLP is earlier than that of the MLCD in most vegetation types, and the end of the growing season (EOS) of the GLP is generally later than that of the MLCD. Based on ground observations, it can be suggested that the GLP performs better than the MLCD in evergreen needleleaved forests and croplands, while the MLCD performs better than the GLP in shrublands and grasslands.
منابع مشابه
Analysis of the effect of drought on the phenology parameters of vegetation indexes from the time series of MODIS sensor images (case study: Hamadan province)
Drought is one of the consequences of climate change that slowly and over a relatively long period of time affects climate, environment, agriculture, vegetation, water resources and even economic and social sectors. The serious outcome of drought is the reduction of vegetation cover. In this research, using MODIS sensor satellite images of 2001-2020 (20-year period) and CHIRPS monthly rainfall ...
متن کاملAnalysis of LAI in Iran based on MODIS satellite data
This study was performed to evaluate the extent of leaf area in Iran from (2002) to (2016) using Remote sensing. For this purpose, we extracted data collection and leaf area index for the Iranian territory from MODIS website. The database was established with programming in MATLAB software to perform mathematical and Statistical calculations repeated. After the analysis of the data in this soft...
متن کاملAdvantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes
A two band Enhanced Vegetation Index (EVI2) without the blue band reflectance has recently been developed as a proxy for the phenology, quantity, and activity of vegetation. We compared the ability of EVI2 and the more commonly used Normalized Difference Vegetation Index (NDVI) to resolve differences in surface greenness and Leaf Area Index (LAI) among three sites located along a burn severity ...
متن کاملPhenology-Based Vegetation Index Differencing for Mapping of Rubber Plantations Using Landsat OLI Data
Accurate and up-to-date mapping and monitoring of rubber plantations is challenging. In this study, we presented a simple method for rapidly and accurately mapping rubber plantations in the Xishuangbanna region of southwest China using phenology-based vegetation index differencing. Temporal profiles of the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Atmospher...
متن کاملInvestigating the 15-year-old seasonal variations in leaf area index using MODIS sensors in Iran
Today, it is widely used satellite imagery to monitor vegetation cover. The aim of this study is to analyses the leaf area in the period of 1395-1381 with the spatial resolution of a kilometer using the data of two remote sensing products of MODIS Terra and Aqua and seasonally. For this purpose, data were analyzed and statistical-mathematical compilation, coding and database creation were done ...
متن کامل